Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images
Abstract: We present a hierarchical VAE that, for the first time, outperforms the PixelCNN in log-likelihood on all natural image benchmarks. We begin by observing that VAEs can actually implement autoregressive models, and other, more efficient generative models, if made sufficiently deep. Despite this, autoregressive models have traditionally outperformed VAEs. We test if insufficient depth explains the performance gap by by scaling a VAE to greater stochastic depth than previously explored and evaluating it on CIFAR-10, ImageNet, and FFHQ. We find that, in comparison to the PixelCNN, these very deep VAEs achieve higher likelihoods, use fewer parameters, generate samples thousands of times faster, and are more easily applied to high-resolution images. We visualize the generative process and show the VAEs learn efficient hierarchical visual representations. We release our source code and models at this https URL.
Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis
Abstract: We tackle human image synthesis, including human motion imitation, appearance transfer, and novel view synthesis, within a unified framework. It means that the model, once being trained, can be used to handle all these tasks. The existing task-specific methods mainly use 2D keypoints to estimate the human body structure. However, they only express the position information with no abilities to characterize the personalized shape of the person and model the limb rotations. In this paper, we propose to use a 3D body mesh recovery module to disentangle the pose and shape. It can not only model the joint location and rotation but also characterize the personalized body shape. To preserve the source information, such as texture, style, color, and face identity, we propose an Attentional Liquid Warping GAN with Attentional Liquid Warping Block (AttLWB) that propagates the source information in both image and feature spaces to the synthesized reference. Specifically, the source features are extracted by a denoising convolutional auto-encoder for characterizing the source identity well. Furthermore, our proposed method can support a more flexible warping from multiple sources. To further improve the generalization ability of the unseen source images, a one/few-shot adversarial learning is applied. In detail, it firstly trains a model in an extensive training set. Then, it finetunes the model by one/few-shot unseen image(s) in a self-supervised way to generate high-resolution (512 x 512 and 1024 x 1024) results. Also, we build a new dataset, namely iPER dataset, for the evaluation of human motion imitation, appearance transfer, and novel view synthesis. Extensive experiments demonstrate the effectiveness of our methods in terms of preserving face identity, shape consistency, and clothes details. All codes and dataset are available on this https URL.
|